SURFACE PREPARATION

STainless Steel

Immersion Service: SSPC-SP10/NACE 2 Near-White Blast Cleaning or ISO Sa 2 1/2 Very Thorough Blast Cleaning with a minimum angular anchor profile of 1.5 mils.

Non-Immersion Service: SSPC-SP6/NACE 3 Commercial Blast Cleaning or ISO Sa 2 Thorough Blast Cleaning with a minimum angular anchor profile of 1.5 mils. **Note:** Commercial Blast Cleaning generally produces the best coating performance for this exposure. If conditions will not permit this, in moderate exposures Series V140F may be applied to SSPC-SP2 or SP3 Hand or Power Tool Cleaned surfaces (SSPC Rust Grade Condition C).

Cast/Ductile Iron

All external surfaces of ductile iron pipe and fittings shall be delivered to the application facility without asphalt or any other protective lining on the exterior surface. All oils, small deposits of asphalt paint, grease, and soluble deposits should be removed and uniformly abrasive blasted using angular abrasive in accordance with NAPF 500-03-04: External Pipe Surface condition. When viewed without magnification, the exterior surfaces shall be free of all visible dirt, dust, loose annealing oxide, rust, mold coating and other foreign matter. Any area where rust reappears before application shall be reblasted. The surface shall contain a minimum angular anchor profile of 1.5 mils (38.1 microns) (Reference NACE RP0287 or ASTM D 4417, Method C).

Concrete

Allow new cast-in-place concrete to cure a minimum of 28 days at 75°F (24°C). Verify concrete dryness in accordance with ASTM F 1869 “Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride” (moisture vapor transmission should not exceed three pounds per 1,000 square feet in a 24 hour period), F 2170 “Standard Test Method for Determining Relative Humidity in Concrete using in situ Probes” (relative humidity should not exceed 80%), or D 4263 “Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method” (no moisture present). Prepare concrete surfaces in accordance with NACE No. 6/SSPC-SP13 Joint Surface Preparation Standards and ICRI Technical Guidelines. Abrasive blast, shot-blast, water jet or mechanically abrade concrete surfaces to remove laitance, curing compounds, hardeners, sealers and other contaminants and to provide an ICRI-CSP 2-3 surface profile. Large cracks, voids and other surface imperfections should be filled with a recommended filler or surfaecer.

Primed Surfaces

Immersion Service: Scuff the Series V140F prime coat surface by abrasive-blasting with fine abrasive before topcoating if the Series V140F prime coat has been in exterior exposure for 30 days or longer and Series 66, L69, L69F, N69, N69F, V69, V69F or 161 is the specified topcoat.

All Surfaces

Must be clean, dry and free of oil, grease and other contaminants.

TECHNICAL DATA

Volume Solids

68.0 ± 2.0% (mixed) ↑

Recommended DFT

2.0 to 3.0 mils (50 to 225 microns) per coat. **Note:** Dry film thickness that exceeds published recommendations but is in compliance with SSPC PA-2 and ANSI/NSF Std. 61 certifications, is acceptable. **Note:** The number of coats and thickness requirements will vary with substrate, application method and exposure. Contact your Tnemec representative.
Curing time varies with surface temperature, air movement, humidity and film thickness. Note: For valve applications allow 14 days cure at 75°F (24°C) prior to immersion. For pipe applications allow 30 days cure at 75°F (24°C) prior to immersion. Ventilation: When used in enclosed areas, provide adequate ventilation during application and cure. Note: Refer to product listings on www.nsf.org for specific potable water return to service information.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>To Handle</th>
<th>To Recoat</th>
<th>Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°F (24°C)</td>
<td>4 hours</td>
<td>5 hours</td>
<td>7 days</td>
</tr>
<tr>
<td>65°F (18°C)</td>
<td>7-8 hours</td>
<td>9-11 hours</td>
<td>8 days</td>
</tr>
<tr>
<td>55°F (13°C)</td>
<td>12-14 hours</td>
<td>16-20 hours</td>
<td>9-10 days</td>
</tr>
<tr>
<td>45°F (7°C)</td>
<td>18-22 hours</td>
<td>28-32 hours</td>
<td>12-15 days</td>
</tr>
<tr>
<td>35°F (2°C)</td>
<td>26-32 hours</td>
<td>46-50 hours</td>
<td>16-18 days</td>
</tr>
</tbody>
</table>

Curing time varies with surface temperature, air movement, humidity and film thickness.

Note: For valve applications allow 14 days cure at 75°F (24°C) prior to immersion. For pipe applications allow 30 days cure at 75°F (24°C) prior to immersion. Ventilation: When used in enclosed areas, provide adequate ventilation during application and cure. For optimum application properties, material temperature should be above 60°F (16°C) prior to application. Partial curing at temperatures below 60°F (16°C) will adversely affect product performance. For optimum mixing and application properties, the material should be above 60°F (16°C).

Start with equal amounts of Series V140F Parts A and B. Power mix contents of each container separately, making sure no pigment remains on the bottom. Pour a measured amount of Part B into a clean container large enough to hold both components. Add an equal volume of Part A to Part B while under agitation. Continue agitation until the two components are thoroughly mixed. Note: Both components must be above 50°F (10°C) prior to mixing. For optimum mixing and application properties, the material should be above 60°F (16°C).

Thinned by volume and thoroughly mix. Failure to thoroughly mix the Part A and Part B components prior to thinning can affect product’s gloss and performance. Do not use mixed material beyond pot life limits. Note: For application to surfaces between 35°F to 50°F (2°C to 10°C), allow mixed material to stand 30 minutes and restir before using.

Thin by volume and thoroughly mix. Failure to thoroughly mix the Part A and Part B components prior to thinning can affect product’s gloss and performance. Do not use mixed material beyond pot life limits. Note: For application to surfaces between 35°F to 50°F (2°C to 10°C), allow mixed material to stand 30 minutes and restir before using.

Start with equal amounts of Series V140F Parts A and B. Power mix contents of each container separately, making sure no pigment remains on the bottom. Pour a measured amount of Part B into a clean container large enough to hold both components. Add an equal volume of Part A to Part B while under agitation. Continue agitation until the two components are thoroughly mixed. Note: Both components must be above 50°F (10°C) prior to mixing. For optimum mixing and application properties, the material should be above 60°F (16°C).

Thinned by volume and thoroughly mix. Failure to thoroughly mix the Part A and Part B components prior to thinning can affect product’s gloss and performance. Do not use mixed material beyond pot life limits. Note: For application to surfaces between 35°F to 50°F (2°C to 10°C), allow mixed material to stand 30 minutes and restir before using.

Thin by volume and thoroughly mix. Failure to thoroughly mix the Part A and Part B components prior to thinning can affect product’s gloss and performance. Do not use mixed material beyond pot life limits. Note: For application to surfaces between 35°F to 50°F (2°C to 10°C), allow mixed material to stand 30 minutes and restir before using.

Thin by volume and thoroughly mix. Failure to thoroughly mix the Part A and Part B components prior to thinning can affect product’s gloss and performance. Do not use mixed material beyond pot life limits. Note: For application to surfaces between 35°F to 50°F (2°C to 10°C), allow mixed material to stand 30 minutes and restir before using.

Thin by volume and thoroughly mix. Failure to thoroughly mix the Part A and Part B components prior to thinning can affect product’s gloss and performance. Do not use mixed material beyond pot life limits. Note: For application to surfaces between 35°F to 50°F (2°C to 10°C), allow mixed material to stand 30 minutes and restir before using.
APPLICATION EQUIPMENT

<table>
<thead>
<tr>
<th>Air Spray</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gun</td>
<td>Fluid Tip</td>
<td>Air Cap</td>
<td>Air Hose ID</td>
<td>Mat'l Hose ID</td>
<td>Atomizing Pressure</td>
<td>Pot Pressure</td>
</tr>
<tr>
<td>DeVilbiss JGA</td>
<td>E</td>
<td>765 or 704</td>
<td>5/16" or 5/8"</td>
<td>3/8" or 1/2"</td>
<td>50-80 psi (3.4-5.5 bar)</td>
<td>10-20 psi (0.7-1.4 bar)</td>
</tr>
</tbody>
</table>

Low temperatures or longer hoses require higher pot pressure.

Airless Spray

<table>
<thead>
<tr>
<th>Tip Orifice</th>
<th>Atomizing Pressure</th>
<th>Mat'l Hose ID</th>
<th>Manifold Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015"-0.019"</td>
<td>3000-4800 psi (207-350 bar)</td>
<td>1/4" or 3/8" (6.4 or 9.5 mm)</td>
<td>60 mesh (250 microns)</td>
</tr>
</tbody>
</table>

Use appropriate tip/atomizing pressure for equipment, applicator technique and weather conditions.

Roller: Use 3/8" or 1/2" (9.5 mm to 12.7 mm) synthetic woven nap roller cover. Use longer nap to obtain penetration on rough or porous surfaces.

Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes.

SURFACE TEMPERATURE

Minimum 35°F (2°C) Maximum 135°F (57°C)
The surface should be dry and at least 5°F (3°C) above the dew point. Coating won’t cure below minimum surface temperature.

CLEANUP

Flush and clean all equipment immediately after use with the recommended thinner or MEK.

† Values may vary with color.