PRODUCT PROFILE

GENERIC DESCRIPTION
Modified Polyamine Ceramic Epoxy

COMMON USAGE
A 100% solids, abrasion-resistant lining specifically designed for wastewater immersion and fume environments and exposure to corrosive soils. Provides low permeation to H₂S gas, protects against MIC and provides chemical resistance to steel, ductile iron pipe and fittings for severe wastewater or buried exposures. A coal-tar-free, resin-rich formulation with low pigment volume concentration (PVC) for maximum performance.

COLORS
5024 Sewer Pipe Green. Note: Epoxies chalk with extended exposure to sunlight.

FINISH
Gloss

SPECIAL QUALIFICATIONS
Contains 20% ceramic microspheres for increased abrasion resistance. Compatible with high-velocity jet sewer cleaning (hydrocleaning) with 0-degree tips (Reference Technical Bulletin No. 11-86). Meets the performance requirements of AWWA C 210 (not for potable water contact).

COATING SYSTEM

PRIMERS
Self-priming. Series N69 or Series N140. Note: Series 431 must be applied to Series N69 or N140 within 7 days. Scarify the surface with fine abrasive before topcoating if exceeding this maximum recoat window.

SURFACE PREPARATION
Prepare surfaces by method suitable for exposure and service.

STEEL
Wastewater Service: SSPC-SP5/NACE 1 White Metal Blast Cleaning or ISO Sa 3 Blast Cleaning to Visually Clean Steel with a minimum angular anchor profile of 3.0 mils (76.2 microns).
Raw water or Buried Service: SSPC-SP10/NACE 2 Near-White Blast Cleaning or ISO Sa 2 1/2 Very Thorough Blast Cleaning with a minimum angular anchor profile of 3.0 mils (76.2 microns).

DUCTILE IRON
All surfaces of ductile iron pipe and fittings shall be delivered to the application facility free of asphalt or any other protective lining on the interior surface. All oils, small deposits of asphalt paint, grease, and soluble deposits shall be removed in accordance with NAFP 500-03-01 Solvent Cleaning prior to abrasive blasting.
Pipe Interior: Uniformly rotary-abrasive blast using angular abrasive to a NAFP 500-03-04: Internal Pipe Surface condition, full removal of annealing oxide layer. When viewed without magnification, the interior surfaces shall be free of all visible dirt, dust, annealing oxide, rust, mold coating and other foreign matter. Random staining shall be limited to no more than 5 percent and may consist of light shadows, rust stains, oxide stains, or stains of previously applied coating. Any area where rust reappears before application shall be reblasted. The surface shall contain a minimum angular anchor profile of 3.0 mils (76.2 microns).
Pipe Exterior: Uniformly abrasive blast the entire surface using angular abrasive to an NAFP 500-03-04: External Pipe Surface Condition. When viewed without magnification, the exterior surfaces shall be free of all visible dirt, dust, loose annealing oxide, mold coating, rust and other foreign matter. Tightly adherent annealing oxide and rust staining may remain on the surface provided they cannot be removed by lifting with a dull putty knife. Any area where rust reappears before application shall be reblasted. The surface shall contain a minimum angular anchor profile of 3.0 mils (76.2 microns).
Fittings: Uniformly abrasive blast using angular abrasive to a NAFP 500-03-05: Fitting Blast Clean *1 condition, no staining. When viewed without magnification, the interior surfaces shall be free of all visible dirt, dust, annealing oxide, rust, mold coating and other foreign matter. Any area where rust reappears before application shall be reblasted. The surface shall contain a minimum angular anchor profile of 3.0 mils (76.2 microns). (Reference NACE RP0287 or ASTM D 4417, Method C).
All Surfaces:
Must be clean, dry and free of oil, grease and other contaminants.

TECHNICAL DATA

VOLUME SOLIDS
100% (mixed)

RECOMMENDED DFT
Carbon Steel: 30.0 to 50.0 mils (762 to 1270 microns) in one or more coats.
Ductile Iron: 40 mils (1015 microns) (nominal) in one or more coats.

CURING TIME

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Set to Touch</th>
<th>Max. Recoat</th>
<th>To Place in Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F (32°C)</td>
<td>1-2 hours</td>
<td>7 days</td>
<td>24 hours</td>
</tr>
<tr>
<td>75°F (24°C)</td>
<td>2-3 hours</td>
<td>7 days</td>
<td>1-2 days</td>
</tr>
<tr>
<td>68°F (20°C)</td>
<td>4-5 hours</td>
<td>7 days</td>
<td>1-2 days</td>
</tr>
<tr>
<td>55°F (13°C)</td>
<td>6-9 hours</td>
<td>7 days</td>
<td>3 days</td>
</tr>
</tbody>
</table>

Note: If more than 7 days have elapsed between coats, the Series 431 coated surface must be mechanically abraded (scarified) before topcoating. Curing time will vary with surface temperature, air movement, humidity and film thickness.

EPA Method 24: 0.19 lbs/gallon (23 grams/litre)

THEORETICAL COVERAGE
1,694 mi² sq ft/gal (39.4 m²/L at 25 microns). See APPLICATION section for coverage rates.

NUMBER OF COMPONENTS
Two: Part A (amine) and Part B (epoxy)

MIXING RATIO
By volume: One (Part A) to one (Part B)
APPLICATION

Before commencing, obtain and thoroughly read the Series 431 Surface Preparation and Application Guide.

<table>
<thead>
<tr>
<th>Dry Mils (Microns)</th>
<th>Wet Mils (Microns)</th>
<th>Sq Ft/Gal (m²/Gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0 (762)</td>
<td>30.0 (762)</td>
<td>53 (4.9)</td>
</tr>
<tr>
<td>40.0 (1016)</td>
<td>40.0 (1016)</td>
<td>40 (3.7)</td>
</tr>
<tr>
<td>50.0 (1270)</td>
<td>50.0 (1270)</td>
<td>32 (3.0)</td>
</tr>
</tbody>
</table>

Note: Recommended DFT will depend on substrate condition and system design. Allow for overspray and surface irregularities. Film thickness is rounded to the nearest 0.5 mil or 5 microns. Add Series 44-721 to increase film build.

Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance.

Drum Set: For Plural Component Application. Place band heaters on drums. Remove the lid and insert the mixing blade shaft through the center two-inch bung; reinset the lid. Mixing blade should be adequately sized to fully agitate material. The material should be 80°F-90°F (27°C-32°C) before the mixing blade is turned on. Insert 5:1 feed pumps into the outside two-inch bung. Place the recirculation line in the 5/4 inch outside bung. Recirculate the material through the primary heaters and heated hose bundle back into the containers. Continue recirculation under agitation until Component A reaches 110°F-120°F (43°C-49°C) and Component B reaches 100°F-110°F (38°C-43°C). Do not exceed 120°F (49°C) for either component. Consult Technical Services for specific details.

Large Kit: For Plural Component Application. Agitate Parts A & B separately making sure no pigment or solids remain on the bottom of the can. DO NOT MIX PART A WITH PART B. Use a 1 (Part A amine) to 1 (Part B epoxy) mix ratio heated plural component airless spray unit. **Note:** Product component A (amine) must be heated to 110°F to 120°F (43°C to 49°C) and component B (epoxy) must be heated to 100°F to 110°F (38°C to 43°C) prior to and during plural component application. Do not exceed 120°F (49°C) for either component. Keep containers tightly sealed prior to use. Consult Technical Services for specific details.

Small Kit: Agitate Parts A & B separately ensuring no pigment or solids remain on the bottom of the can. Scrape all of the Part B into Part A can using a flexible spatula. Use a variable speed drill with a PS Jiffy blade ad mix the blended components for a minimum of two minutes. During the mixing process, scrape the sides and bottom of the container to ensure complete blending of materials. Apply the mixed material within 15 to 20 minutes, or before the material reaches 100°F following agitation. **Note:** A large volume of material will gel quickly if not applied or reduced in volume.

Touch-Up Kit: Equipment: A dispensing gun with a thrust ratio of 26:1 is required (F100-TKAP). Material tube must be used in conjunction with provided disposable static mixer in order to ensure proper mixing. **Usage:** Unscrew retaining ring and remove plug. Save plug in case entire tube is not used. Install static mixing element, replace retaining screw ring, and install tube in gun. Point assembly up and slowly pull the trigger to de-air the mixer. Dispense approximately 1 fluid ounce (29.8 mL) of material to waste and continue to pump until material is of uniform color with the Part A completely blended with the Part B. Use a putty knife, brush or spatula to ensure adequate coverage and repair. **DO NOT THIN**

APPLICATION EQUIPMENT

PLURAL COMPONENT AIRLESS: The preferred application method for Series 431 Perma-Shield PL is using plural component equipment. Plural component equipment reduces material waste, solvent consumption and reduces material viscosity. Contact Tnemec Technical Service for complete Series 431 Plural Component Recommendations.

Airless:

<table>
<thead>
<tr>
<th>Pump Size</th>
<th>Rotary Gun †</th>
<th>Mat'l Hose ID</th>
<th>Manifold Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>45:1 or 56:1</td>
<td>Model 712-216</td>
<td>3/8" (9.5mm)</td>
<td>30 Mesh</td>
</tr>
</tbody>
</table>

† **Rotary Spray Gun:** Series 431 shall be applied to the interior surfaces of pipe or fittings using a rotary coater pistol spray gun. Spray-Quip (Houston, TX), Model 712-216, or similar rotary lance, to produce a monolithic and level film. Contact Tnemec Technical Services for additional information.

Note: Pump assembly should include a moisture trap and oiler, air regulator with gauge and fluid outlet drain valve and outfitted with a gravity fed material hopper (material will not feed through a suction tube).

Brush: Recommended for bell sockets, spigot ends, and small repairs.

Minimum of 50°F (10°C) Maximum of 130°F (54°C). The surface temperature should be dry and at least 5°F (3°C) above the dew point. The coating will not cure properly below minimum surface temperature.

HEALTH & SAFETY

This product contains chemical ingredients which are considered hazardous. Read container label warning and Material Safety Data Sheet for important health and safety information prior to the use of this product. Keep out of the reach of children.
HOLIDAY TESTING
High Voltage Discontinuity (spark) testing shall be performed in accordance with ASTM D 5162 or NACE SP0274 with a minimum voltage setting of 100 to 125 V/mil.

CLEANUP
Flush and clean all equipment immediately after use with Tnemec's No. 4 Thinner or MEK.