Elevated Temperature Epoxy Vinyl Ester

Series 1422 is an FDA-compliant, trowel-grade, high temperature lining suitable for tanks and vessels in food grade service environments or where high temperature conditions are required. Highly filled with glass-flake, it is specially formulated for exceptional service in thermal cycling and chemical reaction vessels. Replaces ProPolymer 4865T. Suitable for immersion service.

Product Color:
- 901 White
- 908 Lavender
- 909 Dent Yellow

Finish:
Semi-gloss

Special Qualifications:
Complies with the requirements and extractive limitations of US FDA 21 CFR Part 175,300 Resinous and Polymeric Coatings for tanks or other repeated use direct food storage or mixing vessels 5 gallons or greater under conditions of use C-E with all food types. Compliance was based upon raw material supplier documents, and third party analytical and extractive test results (HKHG02494144).

Surface Preparation:

Steel:
Immersion Service: SSPC-SP10/NACE 2 Near-White Metal Blast Cleaning or ISO Sa 2 1/2 Very Thorough Blast Cleaning with a minimum angular anchor profile of 3.0 mils.
Note: For aggressive cargo exposures or immersion in elevated temperatures, the SSPC-SP5/NACE 1 or ISO Sa 5 Blast Cleaning to Visually Clean Steel with a minimum angular anchor profile of 3.0 mils may be required. Contact Tnemec Technical Service for more information.

Allow new cast-in-place concrete to cure a minimum of 28 days at 75°F (24°C). Verify concrete dryness in accordance with ASTM F 1869 “Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride” (moisture vapor transmission should not exceed three pounds per 1,000 square feet in a 24 hour period), F 2170 “Standard Test Method for Determining Relative Humidity in Concrete using in situ Profes” (relative humidity should not exceed 80%), or D 4263 “Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method” (no moisture present). Prepare concrete surfaces in accordance with NACE No. 6/SSPC-SP13 Joint Surface Preparation Standards and ICRI Technical Guidelines. Abrasive blast, shot-blast, water jet or mechanically abrade concrete surfaces to remove laitance, curing compounds, hardeners, sealers and other contaminants and to provide a minimum ICRI-CSP 3 surface profile. Large cracks, voids and other surface imperfections should be filled with a recommended filler or surfacer.

Concrete:
Allow new cast-in-place concrete to cure a minimum of 28 days at 75°F (24°C). Verify concrete dryness in accordance with ASTM F 1869 “Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride” (moisture vapor transmission should not exceed three pounds per 1,000 square feet in a 24 hour period), F 2170 “Standard Test Method for Determining Relative Humidity in Concrete using in situ Profes” (relative humidity should not exceed 80%), or D 4263 “Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method” (no moisture present). Prepare concrete surfaces in accordance with NACE No. 6/SSPC-SP13 Joint Surface Preparation Standards and ICRI Technical Guidelines. Abrasive blast, shot-blast, water jet or mechanically abrade concrete surfaces to remove laitance, curing compounds, hardeners, sealers and other contaminants and to provide a minimum ICRI-CSP 3 surface profile. Large cracks, voids and other surface imperfections should be filled with a recommended filler or surfacer.

All Surfaces:
Must be clean, dry and free of oil, grease and other contaminants.

Volume Solids: 85% (mixed). Series 1422 contains a reactive monomer and some loss will occur during application and cure. Actual solids by volume will vary depending upon temperature and air movement.

Recommended DFT:
30.0 to 60.0 mils (762 to 1524 microns) per coat.

Curing Time:
- 90°F (32°C): 3 hours min.
- 75°F (24°C): 4 hours min.
- To recoat: 3 days max.
- Immersion Service: 20 hours

EPA Method 24:
0.41 lbs/gallon (49 grams/litre)

Theoretical Coverage:
1,363 mil sq ft/gal (33.4 m²/L at 25 microns). See APPLICATION for coverage rates.

Number of Components: Two: Part A (base) and Part B (catalyst).

Net Weight per Gallon:
- Medium Kit: 6 gallon pail
- Small Kit: 5 gallon can

Storage Temperature:
(Dry) Continuous 240°F (115°C)

Flash Point - Seta:
Part A: 79°F (26°C) Part B: 153°F (66°C)

Health & Safety:
Paint products contain chemical ingredients which are considered hazardous. Read container label warning and Safety Data Sheet for important health and safety information prior to the use of this product. Keep out of the reach of children.

TECHNICAL DATA:

Recommended DFT:
30.0 to 60.0 mils (762 to 1524 microns) per coat.

Curing Time:
- 90°F (32°C): 3 hours min.
- 75°F (24°C): 4 hours min.
- To recoat: 3 days max.
- Immersion Service: 20 hours

Volatile Organic Compounds:
EPA Method 24
0.41 lbs/gallon (49 grams/litre)

Theoretical Coverage:
1,363 mil sq ft/gal (33.4 m²/L at 25 microns). See APPLICATION for coverage rates.

Number of Components: Two: Part A (base) and Part B (catalyst)

Net Weight per Gallon:
- Medium Kit: 6 gallon pail
- Small Kit: 5 gallon can

Storage Temperature:
(Dry) Continuous 240°F (115°C)

Flash Point - Seta:
Part A: 79°F (26°C) Part B: 153°F (66°C)

Health & Safety:
Paint products contain chemical ingredients which are considered hazardous. Read container label warning and Safety Data Sheet for important health and safety information prior to the use of this product. Keep out of the reach of children.
APPLICATION

COVERAGE RATES

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Dry Mils (Microns)</th>
<th>Wet Mils (Microns)</th>
<th>Sq Ft/Gal (m²/Gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.0 (762)</td>
<td>35.0 (906)</td>
<td>45 (4)</td>
</tr>
<tr>
<td>Maximum</td>
<td>60.0 (1524)</td>
<td>71.0 (1792)</td>
<td>23 (2)</td>
</tr>
</tbody>
</table>

Actual spreading rates will vary with surface profile, amount of overspray and surface irregularities. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance. **THIS PRODUCT SHOULD NOT BE APPLIED BELOW 60°F (16°C) MATERIAL TEMPERATURE.**

MIXING

Power mix contents of Part A (base) thoroughly, making sure no pigment remains on the bottom of the can. Add the Part B (catalyst) slowly to the Part A while under agitation. Ensure that all Part B is blended with Part A by scraping the pail walls with a flexible spatula. Continue to agitate until thoroughly mixed. Care should be exercised so as not to entrapping air in the mixed material. **Note:** Do not over mix, caution should be taken to avoid shearing the glass flake. Do not use mixed material beyond pot life limits.

THINNING

Do not thin.

POT LIFE

45 minutes at 75°F (24°C)

Note: At higher temperatures pot life will decrease (use caution in spray equipment).

APPLICATION EQUIPMENT

- **Troweled:** Use a high grade metal trowel with rounded corners in addition to if needed, a mortar hawk to assist in transfer of mixed materials.
- **Finish Roll:** Use a high quality 1/4” nap, shed resistant, woven fabric roller, lightly dampened with Series 44-809 Smoothing Agent over the surface while Series 1422 is still in a semi-fluid condition.

SURFACE TEMPERATURE

Minimum 60°F (16°C), optimum 70°F (21°C), maximum 100°F (38°C). The surface should be dry and at least 5°F (3°C) above the dew point. At surface temperatures below 60°F (16°C), Series 1422 will not cure properly or obtain maximum chemical resistance. At relative humidities above 75%, the cure of this coating may be retarded. It is also recommended that all precautions be taken to insure that adequate forced-air ventilation exists.

MATERIAL TEMPERATURE

For optimum application, handling and performance, the material temperature during application should be between 60°F and 90°F (16°C and 32°C). Temperature will affect the workability. Cool temperatures increase viscosity and lengthen pot life. Warm temperatures will decrease viscosity and shorten pot life.

CLEANUP

Clean equipment immediately after use with MEK.

© March 20, 2019 by Tnemec Company, Inc.